Interplay between paracrine signaling and gap junctional communication in ovarian follicles.

نویسندگان

  • Joanne E I Gittens
  • Kevin J Barr
  • Barbara C Vanderhyden
  • Gerald M Kidder
چکیده

Intercellular communication is required for ovarian folliculogenesis. This is apparent in mice lacking connexin43 (Cx43, a gap junction protein strongly expressed in granulosa cells), or growth/differentiation factor-9 (GDF9, an oocyte-specific growth factor that stimulates granulosa cell proliferation and differentiation), or in mice expressing a mutant form of Kit ligand (KITL, a paracrine factor that, in the ovary, is secreted by granulosa cells to stimulate oocyte growth). In all of these mutant lines, follicle growth is impaired suggesting a possible interaction between paracrine signaling and gap junctional communication. To assess this possibility, we analyzed gene expression in mutant ovaries. Despite the lack of gap junctional coupling between granulosa cells of Cx43 null mutant ovaries, expression of the genes encoding KITL and its receptor, KIT, is maintained. Furthermore, GDF9 expression is maintained. In GDF9 null mutant ovaries, there is no apparent change in Cx43 expression and, correspondingly, the granulosa cells remain coupled. There is also no increase in granulosa cell apoptosis in ovaries lacking Cx43 or GDF9. Staining for proliferating cell nuclear antigen (PCNA) revealed that the granulosa cells of Cx43 null mutant ovaries have a reduced frequency of DNA synthesis. Using both radiolabeled thymidine incorporation and PCNA staining in vitro, we showed that recombinant GDF9 could restore the proliferation of coupling-deficient granulosa cells to the level of control cells. These results indicate that impaired folliculogenesis in mice lacking Cx43 is due at least in part to reduced responsiveness of granulosa cells to oocyte-derived GDF9, indicating an interaction between these two modes of intercellular communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap junctions and ovarian folliculogenesis.

Gap junctions are collections of intercellular membrane channels that allow adjacent cells to share small molecules (< 1 kDa). Gap junction channels are composed of connexins, a homologous family of more than 20 proteins. In developing follicles, gap junctions couple the growing oocyte and its surrounding follicle cells into a functional syncytium. This review summarizes evidence on the express...

متن کامل

Compromised fertility disrupts Peg1 but not Snrpn and Peg3 imprinted methylation acquisition in mouse oocytes

Growth and maturation of healthy oocytes within follicles requires bidirectional signaling and intercellular gap junctional communication. Aberrant endocrine signaling and loss of gap junctional communication between the oocyte and granulosa cells leads to compromised folliculogenesis, oocyte maturation, and oocyte competency, consequently impairing fertility. Given that oocyte-specific DNA met...

متن کامل

Stage-specific and differential expression of gap junctions in the mouse ovary: connexin-specific roles in follicular regulation.

Gap junction communication plays an essential role in follicle growth. Immunocytochemistry and confocal microscopy were used to examine the expression of gap junction connexins of the alpha and beta subfamilies in follicles from primordial to preovulatory stages in the ovaries of prepubertal and adult mice. Connexin-specific antibodies detected alpha(1), alpha(4), alpha(6), beta(1), beta(2) and...

متن کامل

Embryonic fibroblasts enable the culture of primary ovarian follicles within alginate hydrogels.

Hydrogel-encapsulating culture systems support the consistent growth of ovarian follicles from various species, such as mouse, non-human primate, and human; however, further innovations are required for the efficient production of quality oocytes from early-stage follicles. In this report, we investigated the coculture of mouse ovarian follicles with mouse embryonic fibroblasts (MEFs), commonly...

متن کامل

Myoendothelial gap junctional signaling induces differentiation of pulmonary arterial smooth muscle cells.

Myoendothelial gap junctions are involved in regulating systemic arterial smooth muscle cell phenotype and function, but their role in the regulation of pulmonary arterial smooth muscle cell (PASMC) phenotype is unknown. We therefore investigated in cocultured pulmonary arterial endothelial cells (PAECs) and PASMCs whether myoendothelial gap junctional signaling played a role in PAEC-dependent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 118 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005